Peloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes.

نویسندگان

  • Arun Kanakkanthara
  • Anja Wilmes
  • Aurora O'Brate
  • Daniel Escuin
  • Ariane Chan
  • Ada Gjyrezi
  • Janet Crawford
  • Pisana Rawson
  • Bronwyn Kivell
  • Peter T Northcote
  • Ernest Hamel
  • Paraskevi Giannakakou
  • John H Miller
چکیده

Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside A- and laulimalide-resistant cell lines by selecting 1A9 human ovarian carcinoma cells that were able to grow in the presence of one of these agents. The 1A9-laulimalide resistant cells (L4) were 39-fold resistant to the selecting agent and 39-fold cross-resistant to peloruside A, whereas the 1A9-peloruside A resistant cells (R1) were 6-fold resistant to the selecting agent while they remained sensitive to laulimalide. Neither cell line showed resistance to paclitaxel or other drugs that bind to the taxoid site on β-tubulin nor was there resistance to microtubule-destabilizing drugs. The resistant cells exhibited impaired peloruside A/laulimalide-induced tubulin polymerization and impaired mitotic arrest. Tubulin mutations were found in the βI-tubulin isotype, R306H or R306C for L4 and A296T for R1 cells. This is the first cell-based evidence to support a β-tubulin-binding site for peloruside A and laulimalide. To determine whether the different resistance phenotypes of the cells were attributable to any other tubulin alterations, the β-tubulin isotype composition of the cells was examined. Increased expression of βII- and βIII-tubulin was observed in L4 cells only. These results provide insight into how alterations in tubulin lead to unique resistance profiles for two drugs, peloruside A and laulimalide, that have a similar mode of action.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

βII-tubulin and βIII-tubulin mediate sensitivity to peloruside A and laulimalide, but not paclitaxel or vinblastine, in human ovarian carcinoma cells.

Increased abundance of βII- and βIII-tubulin isotypes in cancer cells confers resistance to vinca and taxoid site drugs; however, the role of these isotypes in the acquired resistance of cancer cells to non-vinca or non-taxoid site binding agents has not been described. Peloruside A (PLA) and laulimalide are the only known non-taxoid site microtubule-stabilizing agents. A human ovarian cancer c...

متن کامل

Preclinical Development Peloruside- and Laulimalide-Resistant Human Ovarian Carcinoma Cells Have bI-Tubulin Mutations and Altered Expression of bII- and bIII-Tubulin Isotypes

Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside Aand laulimalide-resistant cell lines by selecting 1A9 human ovarian carcino...

متن کامل

Preclinical Development bII-Tubulin and bIII-Tubulin Mediate Sensitivity to Peloruside A and Laulimalide, but not Paclitaxel or Vinblastine, in Human Ovarian Carcinoma Cells

Increased abundance of bIIand bIII-tubulin isotypes in cancer cells confers resistance to vinca and taxoid site drugs; however, the role of these isotypes in the acquired resistance of cancer cells to non-vinca or nontaxoid site binding agents has not been described. Peloruside A (PLA) and laulimalide are the only known non-taxoid site microtubule-stabilizing agents. A human ovarian cancer cell...

متن کامل

Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines.

Peloruside A (peloruside), a microtubule-stabilizing agent from a marine sponge, is less susceptible than paclitaxel to multidrug resistance arising from overexpression of the P-glycoprotein efflux pump and is not affected by mutations that affect the taxoid binding site of beta-tubulin. In vitro studies with purified tubulin indicate that peloruside directly induces tubulin polymerization in t...

متن کامل

Specific β-Tubulin Isotypes Can Functionally Enhance or Diminish Epothilone B Sensitivity in Non-Small Cell Lung Cancer Cells

Epothilones are a new class of microtubule stabilizing agents with promising preclinical and clinical activity. Their cellular target is β-tubulin and factors influencing intrinsic sensitivity to epothilones are not well understood. In this study, the functional significance of specific β-tubulin isotypes in intrinsic sensitivity to epothilone B was investigated using siRNA gene knockdown again...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2011